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An analytic solution of the non-isentropic equations of gas-dynamics, for the 
one-dimensional motion of a non-viscous and non-conductive medium, is derived 
in this paper for the first time. This is a particular solution which contains only 
one arbitrary function. On the basis of this solution, the interaction of a centred 
simple wave with a shock of moderate strength is analyzed; and it is shown that, 
for a weak shock, this analysis is compatible with Friedrichs’s theory. Further- 
more, in the light of this analysis, it is explained why the empirical methods 
employed by the shock-expansion theory, including Whitham’s rule for deter- 
mining the shock path, work. 

1. Introduction 
During the past two decades, apart from the development of numerical 

methods, the literature on the decay of shock waves has primarily been con- 
cerned either with the treatment of strong shocks by means of the similarity 
solutions of the equations of gas-dynamics, or with the study of those changes in 
the speed and the strength of the shock which are entirely caused by the non- 
uniformity of the region in which the shock propagates. This paper, however, 
deals with a problem which has received very little attention since Friedrichs’s 
theory: the decay of a plane shock wave as a result of its interaction with a simple 
wave. The simplest case of a motion involving such an interaction is that caused 
by the deceleration of a piston which is initially moving with a constant velocity 
in contact with the constant state behind a uniform shock. 

In general, interaction of a simple wave with a shock discontinuity gives rise to 
two reflected waves: a non-isentropic flow and an isentropic general wave? 
(see figure 1). That, on the one hand, the boundary of a non-isentropic region 
carrying a constant value of the entropy travels with the fluid velocity, dxldt = u; 
and, on the other hand, the boundary of the entire reflected flow has to propagate 
back into the incident simple wave at  the speed of sound relative to the fluid, 
dxjdt = zc - c,  would imply that upon reflection, in addition to the non-isentropic 
flow immediately adjacent to the decaying shock, there is also a new isentropic flow 
created, which has to be described by the general solution of the isentropic equa- 
tions of motion. Since such a solution is known (see, for example, Courant &, 

t In this paper, the flow which results from the interaction of two simple waves and is 
described by the general solution of the isentropic equations of motion is called a general 
wave. 
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Friedrichs 1948), this isentropic flow can be uniquely specified by solving the 
Cauchy’s problem a t  the sonic discontinuity between regions I and 11. However, 
in specifying the non-isentropic flow in region 111, we are faced with an initial 
boundary-value problem with an unknown boundary, whose explicit solution in 
the general case of a shock of arbitrary strength is not feasible. 

2 

FIQURE 1. Rcgions 111, I1 and I, whose right-hand boundaries travel at the shock speed U ,  
the particle velocity u, and the speed of sound c relative to the fluid, stand for the non- 
isentropic flow, the general wave, and the incident simple wave, respectively. 

Friedrichs’s theory (cf. Friedrichs 1947) supplies a solution to this problem if 
the initial shock is weak enough for the change of entropy across it to be negligible, 
i.e. if the flow behind the decaying shock can be assumed to  remain isentropic. 
I n  this case, the isentropic simple wave solution happens to  satisfy the Rankine- 
Hugoniot conditions a t  the shock front, and the shock path can be determined 
by the imposition of the kinematic condition dxldt = U .  Within its range of 
validity, in that the method it employs is duly justified, this is a rigorous theory. 
There are, however, other methods, generally employed for solving this problem 
in the case of stronger shock waves (cf. Eggars, Savin & Syvertson 1955; Whitham 
1958), which are developed in an ad hoc manner; and their results, though 
remarkably accurate, are apparently quite fortuitous. These methods-which 
belong to the so-called shock-expansion theory-will be discussed in 0 5. 

To obtain an explicit solution to  the initial boundary-value problem posed 
here, without limiting the strength of the shock, we need to  know the general 
solution of the non-isentropic equations of motion; this is in order that the two 
boundary conditions a t  the shock front and a third condition (which depends on 
the particular type of the incident simple wave) a t  the particle path between 
regions I11 and I1 can be satisfied by specifying the three arbitrary functions 
contained in this general solution. However, since the particular solution t o  be 
derived in this paper contains only one arbitrary function, and hence is clearly 
insufficient to  enable us to  tackle this problem in its full generality, we are here 
led to  ask the following question: can this solution describe, a t  least, a specific 
type of non-isentropic flow-one which arises from the interaction of a specific 
type of incident simple wave-adjacent to a decaying shock ? Although to describe 
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even such a specific type of flow in an exact manner, we need a solution more 
general than the one derived here, the analysis which follows will show that this 
particular solution can in fact describe one such flow to within a reasonable degree 
of approximation. If the single arbitrary function contained in this solution is 
determined such that the kinematic boundary condition, dxldt = U ,  is satisfied 
exactly, then it is possible to satisfy the Rankine-Hugoniot conditions approxi- 
mately by setting a limit on the strength of the shock; a limit, however, which 
does not have to be so restrictive as in the case of Friedrichs’s theory. It turns 
out that the corresponding incident simple wave, whose interaction with a plane 
shock will give rise to this specific type of non-isentropic flow, is a centred simple 
wave, i.e. the type of simple wave which is created by a sudden halt or recession 
in the motion of the piston. 

The solution presented here, besides being applicable to stronger shocks, 
describes certain non-isentropic features of the decay of a shock wave whose 
analysis is beyond the scope of Friedrichs’s theory; although in another respect, 
in that it only deals with the case of a centred simple wave, it is more limited in its 
scope than the latter. The main contribution of this solution, however, lies in its 
throwing light on some of the empirical methods applied to this problem in the 
past. 

2. Derivation of a particular solution of the non-isentropic equations 
of motion 

The Eulerian equations governing the one-dimensional motion of a fluid in 
the absence of dissipative forces are 

ap ap au 
-+u-+p- = 0, 
at ax ax 

as as 
-+u- = 0, 
at ax 

where u stands for the fluid velocity, and p ,  p and S are the pressure, the density 
and the entropy of the fluid, respectively. Written in terms of the speed of sound 
c = [ ( a ~ / a p ) ~ ] i  by means of the equation of state for an ideal gas, these equations 
assume the alternative form 

where y is the ratio of the specific heats cp  and c,. 
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To put these equations in a form more suited to a hodograph transformation, 
let us introduce the following new independent variables 

to obtain 

t (2.4) 

which in terms of Jacobians become 

Now, the fact that for a non-isentropic flow 6 and 7 are independent enables us to 
interchange the roles of the dependent and the independent variables in these 
equations by multiplying every one of them by the non-zero Jacobian a(t,x)/ 
a(& 7). The resulting equations, when written out in terms of derivatives, yield 

Let us next denote the recurring expression in these equations by the function 

and insert the partial derivatives of x from the second and the third of the above 
equations in the first equation, to  obtain 
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Since we must have azx/afaq = azx/aq 86, however, the auxiliary function $ must 
satisfy the following differential equation 

whose integral in terms of an arbitrary function of f - q is 

$ = e-Vs(5-r). (2.8) 

As long as (2.8) is satisfied, the second and third equations in (2.7) can be 
looked upon as the definition of x in terms of u and t .  This therefore implies that 
the system of equations (2.7) is, in effect, reduced to the following two equations: 

and (2.10) 

which are obtained by substituting (2.8) in the definition of @ and in the first 
equation of (2.7)) respectively. If we now solve these two equations for atlac and 
at/aq and require that a2t/a,5aq = a2t/aya,5, the following single differential 
equation for u = u(f ,v)  results 

This is a second-order partial differential equation which will later be seen to be 
of the hyperbolic type as expected. 

At this point, let us make a conjecture. Noting that [--7 is a function of 
entropy only, and that in the isentropic limit u = u(f,r) should reduce to the 
Riemann invariant 

let us venture to try the following for a solution of (2.11) 

2 
u = - ei(r-l)V h(5- q) + const., (2.12) 

Y-1 

where h is an arbitrary function of [ - q. In fact, when (2.12) is substituted in the 
differential equation (2.11)) it so happens that all the exponential terms, which 
are function of q only, disappear and the resulting equation assumes the form of a 
differential relation between the two functions g(& - q) and h(f - 7). That is to say, 
the expression (2.13) does, in fact, satisfy the differential equation (2.11) as long 
as one of the two functions g and h is expressed in terms of the other by the 
resulting differential relation. If we choose to express g in terms of h, then the 
expressions obtained earlier for the partial derivatives of x and t can also be 
expressed in terms of h and integrated to yield a solution of the system of equa- 
tions (2.5) in terms of this arbitrary function. 
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In the following representation of this solution, the function f has been intro- 
duced instead of a certain combination of g and h, and 6 and 7 have been replaced 
by the original variables G and S: 

x = [u + ch(cr)]t, 

(2.13) 

where the new variable CT is defined by 

0- = 1 s-so 
Y ( Y - 1 )  c, * 

It should be noted that solution (2.13) is not directly reducible to an isentropic 
solution by setting cr = const. in the above equations, since, in deriving this 
solution, it was assumed that 6 and 7 were independent. 

3. The non-isentropic flow 
A solution describing the non-isentropic flow just behind a decaying shock has 

to satisfy two boundary conditions along the shock path: the Rankine-Hugoniot 
relations and the kinematic condition dxldt = U .  According to whether the 
arbitrary function h contained in solution (2.13) is specified by imposing one or 
the other of these two boundary conditions, therefore, we obtain two different 
solutions. In  this section, after having thus specified the two alternative forms of 
this arbitrary function, we shall attempt to find out whether there are any limits 
within which the difference between the corresponding values of these two 
functions is negligibly small. 

In  a frame of reference in which the gas in front of the shock is stationary, the 
Rankine-Hugoniot relations for an ideal gas can be written as 

where the variable n is defined by 
n=--- l  P 

Pa 

and the constant values of the flow variables within the stationary gas ahead of 
the shock are designated by the subscript zero. For such a gas, the entropy and 
the speed of sound c = [yp/p]* can also be expressed as functions of n at the shock 
front with the aid of the first relation in (3.1) and the equation of state 
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Hence, to impose the kinematic condition at  the shock front, let us differen- 
tiate the expressions given by solution (2.13) for x and t with respect to n, and 
insert the results in dxldt = U ,  to arrive at  the following ordinary differential 
equation : 

h3+ ldu y+lU-udlnc  
c a n  y-1 c an 

2 d n  y-1 an 2 G an y-1 c an 
y+ 1 77-udtt y+ 1 U-udlnc 

an 

+ ( ? + I d 5  +-- 2 d l n c )  h ---____-- 

in which the flow variables V,  u, c and cr are to be expressed in terms of n. If we 
now integrate this differential equation using the initial conditions h = 1 when 
n = 0, we will obtain the reduced form of the function h along the shock path: 
h = h(n). (The choice of these initial conditions is dictated by the fact that, in the 
limiting case of a sonic discontinuity, the last relation in solution (2.13) must 
reduce to a Riemann invariant,) The original form of this function, h = h(5), 
can then be retrieved by means of the relationship which holds between n and 5 

at the shock front. This relationship and the numerical results of the above 
integration for y = $ are shown in table 1. 

77 

0 1~0000 1~0000 
1 1.0028 1.0175 
2 1.0096 1.0692 
3 1.0168 1.1388 
4 1-0233 1.2181 
5 1.0290 1.3029 

TABLE 1 

Next, in order to determine the alternative form of the arbitrary function h 
which will, on the other hand, satisfy the Rankine-Hugoniot conditions exactly, 
let us consider the last relation in solution (2.13). If the constant in this relation is 
determined by once again requiring that for a sonic discontinuity (n = 0), 
propagating into a region of quiet gas (u = 0,  c = c,,), h must have the value 1, 
and solve the resulting equation for h, we will arrive at 

When the variables u and c in it are expressed in terms of n, this equation will 
yield h = h(n) at the shock front. Note, however, that the numerator of the 
second term in this equation represents the change of one of the Riemann 
invariants through a weak shock; and hence, in the limit of n < 1, has a vanish- 
ingly small value (see Courant & Friedrichs 1948). Therefore, comparing the 
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values of h obtained above with 1, i.e. with the value given by equation (3.4) in 
the case of a weak shock, we can readily see that, as long as 7~ < 1, the two alter- 
native forms of this function tally. 

The question to be asked now is: up to what shock strengths would the corre- 
sponding values of h(m) given by equations (3.3) and (3.4) remain close to one 
another? It should be noted that, unlike in the case of Friedrichs's theory, here 
the strength of the shock is not limited by the range of validity of the solution, 
but by the degree of approximation with which both of the boundary conditions 
at the shock front can be satisfied. For this reason, this compatibility requirement 
turns out not be to so restrictive as to exclude those shocks through which the 

1 

71 

0.1 

I I I I I 

500 1000 1500 2000 

t/7 

FIGURE 2. Variation of pressure a t  the shock front. Here, each curve is plotted starting a t  
the same point on the x axis; where they actually start from is implied by the initial 
strength of the shock nr Tho crrors involved are 5 %, 3 yo and 04' % for nl = 3, 2, and 1, 
respcctively. 

change of entropy is appreciable. In  fact, in the case of y = 5, the difference 
between the corresponding values of the two alternative forms of h is less than 
0.05, even for shocks as strong as 7~ = 3. If this discrepancy is taken to be a 
measure of our approximation, then this implies that for a decaying shock which 
starts with the initial strength of r1 = 3, solution (2.13) satisfies both of the 
boundary conditions to within a 5 yo error. To within a 5 yo error, however, the 
change of entropy across a shock of this strength is not zero. In the case of y = Q ,  
for the change of entropy across the shock to be zero to within a 5 yo error, the 
shock should start with an initial strength of 7~~ < 1-6. 

In  plotting the following graphs, illustrating certain features of the decay of 
shocks of different initial strengths, for the two values of the adiabatic index 
y = and y = g ,  we have used the expression for h(o)  which is obtained by 
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integrating equation (3.3), and have, in each case, indicated the degree of 
approximation involved. The unit of time in these calculations is chosen to be the 
time it takes the sonic discontinuity in front of the incident simple wave to travel 
a unit of distance towards the initial uniform shock. That is, if the characteristic 
time and the characteristic distance of the problem are denoted by r and h 

1.10 

1 *oo 

7r1=3, y=g 

n1’1=2, y=z 

I I I I 

500 1000 1500 2000 
tI7 

FIQURE 3. Variation of entropy a t  the shock front. 

- 500 0 500 
4 

FIQIJRE 4. Distribution of entropy within the non-isentropic flow at a given time. 
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respectively, then h = (ul + CJT, where the subscript 1 designates the value of a 
flow variable within the constant state behind the initial shock. It is further 
assumed that the incident simple wave arrives at  the shock front at  t/r = 1, 

Since the values of h ( c )  depart from 1 only by a small amount, it can readily be 
seen from the first equation in solution (2.13) that, to within the degree of our 
approximation, distributions of the fluid velocity u and the speed of sound G 

x/h = 1. 

I 
I 
I I 

I 
I 
I 
I 
I 
I 
1 
I 
I 

I I 
I I I I I I 

- 1000 - 500 0 500 
X I  

FIGURE 5 .  Distribution of entropy within the non-isentropic flow a t  a given time. 

in the region immediately behind the shock are linear. Friedrichs’s theory will 
yield this same result if the incident flow is a centred simple wave which, as we 
shall see in the following section, is the case here. That the law of decay of the 
shock front calculated by means of the non-isentropic solution (2.13) behaves 
like t - 4  as t -+ co, i.e. that in the limit of a very weak shock our analysis also yields 
the same result as that of Friedrichs’s theory, is demonstrated in the appendix. 

4. The incident simple wave 
Having determined the specific non-isentropic flow-which to within a certain 

degree of approximation can be described by our particular solution-in region 
111, we shall now proceed to specify the corresponding flows in regions I1 and I 
by solving Cauchy’s problem twice at the two relevant boundaries of these 
regions. The general solution of the isentropic equations of motion is known for 
any value of h in terms of hypergeometric functions. However, as will become 
clear later in this section, the choice of the following form of this solution which 
corresponds to the value of y = 5 (cf. Stanyukovich 1960), for our present pur- 
pose, will result in no loss of generality: 

I 
@ = i-&{Fl[(6i)*+u] +F,[(Bi)*-u]),j 

where i = c 2 / ( y -  1)  is the enthalpy, and Fl and F, are two arbitrary functions. 



The decay of a plane shock: wuve 747 

If, in order to satisfy the two boundary conditions a t  the weak discontinuity 
between regions I11 and 11, we require that at this boundary the expressions for 
x and t given by the two solutions (2.13) and (4.1) in the case of y = Q match, 
we will arrive at the following two equations: 

in which h1 andfl stand for h(cr,) and f(vl) respectively; since the entropy at  this 
boundary, u,, is constant, so are h, and f,. Note, however, that at this boundary 
the two variables u and i are not independent : the last equation in solution (2.13) 
yields 

where K = -3co, as calculated in the preceding section. Hence, after having 
rewritten the partial derivations of $ in the above two equations in terms of 
F,, F2, and the total derivatives of Fl and F2 with respect to their arguments, it is 
possible to transform equations (4.2) into two ordinary differential equations by 
employing the relationship (4.3) to express (6i)4 + u and (6i): - u in terms of a 
single variable. Integrating the resulting differential equations for F! and Fz, 
and making a further use of the relationship (4.3) to retrieve the original argu- 
ments of these two functions, we will obtain 

u = h,( 6i)i  + K ,  (4.3) 

where (4.5) 

Next, insertion of the above two expressions in solution (4.1) yields an exact 
description of the flow in region 11. Before discussing the nature of this flow, 
however, let us specify the incident simple wave in region I .  

Since this simple wave is initially adjacent to the constant state, u = ul, c = c,, 
behind the original uniform shock, it can be represented by 

where KO = u1 - 3cl, and the arbitrary function g(u) is given by 

a$ a$ - g ( u )  = -+c--; au ai 

an equation which is obtained by requiring that the general and the simple wave 
solutions match across the sonic discontinuity between regions I1 and I. In- 
serting the expressions given by equations (4.4) for Fl and F2 into this equation, 
and making use of the relationship (4.7), we obtain 

g(u)  = 64a[2(u - K O )  (224 - KO - K)-2 + (2u - KO - K)-l+ ( K  - KO)-l]. (4.8) 

The above descriptions of the flows in regions I and I1 have so far been obtained 
by making the implicit assumption that the description of the flow in region I11 
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is exact. In order to be consistent? however, we should also subject these results 
to the approximation used earlier in the analysis of the flow in region 111. 
Equation (4.5) clearly indicates that to within the degree of approximation 
employed in satisfying the Rankine-Hugoniot conditions at  the shock front, 
i.e. in the limit of h, - 1 < 1, the constant a equals zero. Since the first two terms 
inside the brackets in equation (4.8) are finite and the third term is of the order of 
(h,- l)-l, it then follows that in this limit g(u)  is also zero. That is to  say, the 
particular simple wave whose interaction with a shock discontinuity gives rise to  
the particular non-isentropic flow considered in $ 3  is, in fact, a centred simple 
wave. 

Furthermore, in this limit, the departure of the isentropic general wave of 
region I1 from a centred simple wave also turns out to be negligibly small. To 
demonstrate this, let us first divide the expressions given by equations (4.1) and 
(4.4) for x = x(u, i) and t = t(u, i) to arrive at  

X / t  = u++(u-K),  (4.9) 

a result which is independent of the constant a and yields u as a function of x and 
t. If we next insert u = u(x, t )  in t = t(u, i )  and solve the resulting equation for 
i = i(x, t ) ,  the expressions obtained for u and i as functions of x and t can then be 
employed to show that one of the Riemann invariants within this general wave 
has the following dependence on x and t 

where 

~ - ( 6 i ) 4  = - 3 - + K  ( l -$)+K#,  :(: ) 
$(x,t) = 1+[16(h~- l ) f~ ] / [ (~ -K)z t~ ] .  

Since f / t  remains finite throughout the motion, however, this equation yields 

lim [u - (6i)tI = K .  
hl+l 

(4.10) 

Not only does the constancy of the above Riemann invariant imply that the flow 
in region I1 has to be a simple wave in the limit, but also (4.10) inserted in (4.9) 
yields the expression x/t = u + c, which explicitly specifies the type of this simple 
wave as a centred one. 

5. Remarks on shock-expansion theory 
Shock-expansion theory, which is generally employed in calculating the 

pressure distribution on an aerofoil in a uniform supersonic stream, deals with the 
mathematical analogue of the problem considered here in the case of a two- 
dimensional steady flow. Although its application is not restricted to weak 
shocks, this theory differs from Friedrichs’s theory only in that it adopts a 
different value of the Riemann invariant, i.e. 

2 
c = ul-- (5.1) 

2 
u-- 

Y-1 y-  l C 1  
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instead of 2c,/(y- 1). However, that the distribution of pressure calculated by 
means of the above formula corresponds remarkably well to the experimental 
results for a wide range of shock strengths (Eggars et al. 1955) is quite fortuitous; 
not only is the flow behind a non-uniform shock assumed to be isentropic even 
when the shock is not weak, but also the choice of the constant in the above 
formula is made without any justification. 

Mahony (1955) attempts to justify this theory by means of a numerical calcula- 
tion in which the first-order changes of entropy across the shock are taken into 
account. His conclusion is that although the errors arising from using an isen- 
tropic solution, on the one hand, and making an incorrect choice of the value 
of the Riemann invariant, on the other hand, ‘cancel out almost exactly in 
the examples of circular-arc aerofoils ’; nevertheless, ‘the accuracy of shock- 
expansion theory in the extreme cases, . . . , is to some extent a matter of chance ’. 

Relevant to shock-expansion theory, in that formula (5.1) can be obtained by 
means of it, is furthermore the following simple rule due to Whitham (1958). If 
the non-isentropic equations of motion are first written in a characteristic form, 
then this rule consists of applying the differential relation which must be satisfied 
by the flow variables along a characteristic, in conjunction with the Rankine- 
Hugoniot relations, to the flow variables just behind the shock front to determine 
the shock path. In  connexion with this rule also-since in no case, other than 
that of a shock whose strength has reduced to zero, is the shock path a charac- 
teristic of the equations of motion-as Whitham remarks, ‘the accuracy of the 
results for a wide range of problems and for all shock strengths is truely surprising ’. 

Surprising these results certainly are; but here at  least, for shocks of moderate 
strength, is the reason why shock-expansion theory works: there happens to be a 
striking resemblence between the non-isentropic flow just behind a decaying 
shock and an isentropic simple wave. This is readily seen from the first and the 
last equations in solution (2.13), and the values of h given in table 1. In  fact, 
formula (5. l), employed in shock-expansion theory, can be directly derived from 
the last equation in this solution by imposing the relevant initial conditions 
behind the original uniform shock: when u = u1 and c = cl, h = h, N 1. 

In a similar way, Whitham’s rule works because the differential relation used in 
this rule happens to be the same as that given by solution (2.13). Since the 
differential relation to be applied to the flow variables just behind the shock 
front should be obtained from a solution of the equations of motion, and not 
from their characteristic form, the correct relation is 

2c dhdS -- 2 
du = --hdc- 

y-  1 y(y- 1)2& c, ’ 

which is obtained by differentiating the last equation in solution (2.13). However, 
it turns out that letting h N 1 in equation (3.3)’ we get dh/da N (y - 1)/2, which 
inserted in the above equation will yield a differential relation precisely the same 
as that which must be satisfied by the flow variables along a characteristic of the 
equations of motion. 
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6. Concluding remarks 
It should be pointed out that the hodograph co-ordinates [ and 7, introduced in 

this paper, may in fact prove useful even in obtaining numerical solutions of the 
non-isentropic equations of motion. Apart from reducing the order of these 
equations, see equation ( Z . l l ) ,  the further simplification offered by this trans- 
formation lies in the fact that, in the ([,q) plane, the shock path is known: the 
Rankine-Hugoniot conditions together with the equation of state (3.2) yield 
5 = [(n) and 7 = q(7r). Admittedly the arbitrary function g ( 6 - 7 )  appearing in 
equation (2.1 1) introduces new computational problems; however, it can be 
seen from the following form of this equation 

that the arbitrary function g ( [ - 7 )  does not appear in the coefficients of the 
second-order terms which play a much greater part in governing the behaviour of 
the solution. 

A similar transformation can also be applied to the relativistic equations of 
gas-dynamics to reduce the corresponding relativistic problem to that of solving 
a second-order partial differential equation for which Cauchy’s boundary 
conditions at the shock front are known (see Ardavan-Rhad 1969). 

It is a pleasure to express my thanks here to Dr N. 0. Weiss for his help and 
guidance. In  carrying out this work, I am also indebted to Dr F. G. Friedlander 
and Professor M. J. Lighthill for their instructive discussions. 

Appendix 
To show that the analysis presented in this paper is compatible with Pried- 

richs’s theory, we shall here derive the limiting law of motion of a weak shock on 
the basis of solution (2.13). For this purpose, it is more convenient to consider the 
following differential form of the third equation in this solution: 

dlnf y+1[2/(y-l)](dh/da)h- 1 

This is because, in the limiting case of h-t 1 and 7r-f 0, an explicit expression can 
be found for d h / d n  by expanding the numerator and the denominator of 
equation (3.3) in powers of h - 1 and 7r : 

(A 1) - = -- 
d n  2 h2- 1 
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Note,  incidentally, that the result used in $ 5 ,  i.e. that in the limit of h - t l ,  
dh/dcr = 2/(y - l ) ,  follows from this expression immediately. 

To determine the limiting behaviour of the function f ,  therefore, it suffices to 
insert the expression given by ( A  2 )  for dhldcr in equation ( A  l ) ,  replace (T by a 
third-order term in the shock strength, and let h+1; the resulting equation 
when integrated yields f - r2. Since, in this limit, c N c,,, however, using the 
second equation in solution (2.13), we arrive a t  t - ra: a result which is precisely 
the same as that obtained by means of Friedrichs’s theory. 
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